Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Genet Med ; 26(5): 101087, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38288683

RESUMO

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.

2.
Arch Pediatr ; 31(2): 112-116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262863

RESUMO

BACKGROUND: Chromosomal abnormalities are the main cause of birth defects, intellectual disability, and miscarriages. They contribute to significant human morbidity and infant mortality. Here we report for the first time the chromosomal abnormalities encountered in the population of Eastern Morocco. Furthermore, we describe a new case of a de novo partial trisomy 13q combined with a terminal deletion in an 11-day-old girl. METHODS: From November 2015 to March 2022, 195 patients from the BRO Biobank who were clinically suspected of having chromosomal abnormalities were referred to the cytogenetics laboratory of the Genetics Unit of the Faculty of Medicine and Pharmacy of Oujda for cytogenetic study. Karyotyping analysis was performed on peripheral blood samples using standard R banding techniques. To identify single-nucleotide polymorphism (SNP) and copy number variants (CNVs), Illumina SNP array was used. RESULTS: Among 195 studied cases, 32 (16.4 %) had abnormal karyotypes, of which 12 cases had numerical aberrations while 20 cases had structural aberrations. The most common numerical aberrations were Turner syndrome and Down syndrome followed by Edward, Patau, and Klinefelter syndromes. For structural aberrations, translocations were the most common, followed by derivative chromosomes, inversions, deletions, and an addition on chromosome 13 identified in an 11-day-old girl. To further characterize this addition, SNP array was carried out and revealed a 58.8-Mb duplication in region 13q14.3q34 associated with a 1-Mb deletion in region 13q34. Follow-up parental chromosomes analysis showed normal karyotypes for the parents, confirming that this partial trisomy 13q was de novo. Comparison of the phenotype associated with this novel duplication on chromosome 13q with those previously reported confirmed the considerable variability in the phenotype of the patients with partial trisomy 13q. CONCLUSION: This study provided the first report on chromosomal abnormalities in Eastern Morocco and it enriched the phenotype spectrum of partial trisomy 13q and further confirmed the genotype-phenotype correlations. Furthermore, these findings justify the need to set up microarray comparative genomic hybridization techniques in Morocco for better genetic diagnosis.


Assuntos
Cromossomos Humanos Par 13 , Trissomia , Lactente , Feminino , Humanos , Trissomia/genética , Hibridização Genômica Comparativa , Cromossomos Humanos Par 13/genética , Polimorfismo de Nucleotídeo Único , Marrocos , Deleção Cromossômica , Aberrações Cromossômicas
4.
Front Genet ; 14: 1099995, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035737

RESUMO

Introduction: Prenatal ultrasound (US) anomalies are detected in around 5%-10% of pregnancies. In prenatal diagnosis, exome sequencing (ES) diagnostic yield ranges from 6% to 80% depending on the inclusion criteria. We describe the first French national multicenter pilot study aiming to implement ES in prenatal diagnosis following the detection of anomalies on US. Patients and methods: We prospectively performed prenatal trio-ES in 150 fetuses with at least two US anomalies or one US anomaly known to be frequently linked to a genetic disorder. Trio-ES was only performed if the results could influence pregnancy management. Chromosomal microarray (CMA) was performed before or in parallel. Results: A causal diagnosis was identified in 52/150 fetuses (34%) with a median time to diagnosis of 28 days, which rose to 56/150 fetuses (37%) after additional investigation. Sporadic occurrences were identified in 34/56 (60%) fetuses and unfavorable vital and/or neurodevelopmental prognosis was made in 13/56 (24%) fetuses. The overall diagnostic yield was 41% (37/89) with first-line trio-ES versus 31% (19/61) after normal CMA. Trio-ES and CMA were systematically concordant for identification of pathogenic CNV. Conclusion: Trio-ES provided a substantial prenatal diagnostic yield, similar to postnatal diagnosis with a median turnaround of approximately 1 month, supporting its routine implementation during the detection of prenatal US anomalies.

5.
Am J Hum Genet ; 109(12): 2270-2282, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368327

RESUMO

An Xq22.2 region upstream of PLP1 has been proposed to underly a neurological disease trait when deleted in 46,XX females. Deletion mapping revealed that heterozygous deletions encompassing the smallest region of overlap (SRO) spanning six Xq22.2 genes (BEX3, RAB40A, TCEAL4, TCEAL3, TCEAL1, and MORF4L2) associate with an early-onset neurological disease trait (EONDT) consisting of hypotonia, intellectual disability, neurobehavioral abnormalities, and dysmorphic facial features. None of the genes within the SRO have been associated with monogenic disease in OMIM. Through local and international collaborations facilitated by GeneMatcher and Matchmaker Exchange, we have identified and herein report seven de novo variants involving TCEAL1 in seven unrelated families: three hemizygous truncating alleles; one hemizygous missense allele; one heterozygous TCEAL1 full gene deletion; one heterozygous contiguous deletion of TCEAL1, TCEAL3, and TCEAL4; and one heterozygous frameshift variant allele. Variants were identified through exome or genome sequencing with trio analysis or through chromosomal microarray. Comparison with previously reported Xq22 deletions encompassing TCEAL1 identified a more-defined syndrome consisting of hypotonia, abnormal gait, developmental delay/intellectual disability especially affecting expressive language, autistic-like behavior, and mildly dysmorphic facial features. Additional features include strabismus, refractive errors, variable nystagmus, gastroesophageal reflux, constipation, dysmotility, recurrent infections, seizures, and structural brain anomalies. An additional maternally inherited hemizygous missense allele of uncertain significance was identified in a male with hypertonia and spasticity without syndromic features. These data provide evidence that TCEAL1 loss of function causes a neurological rare disease trait involving significant neurological impairment with features overlapping the EONDT phenotype in females with the Xq22 deletion.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Feminino , Humanos , Masculino , Transtorno Autístico/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Hipotonia Muscular/genética , Hipotonia Muscular/complicações , Fenótipo , Síndrome , Fatores de Transcrição/genética
6.
Mol Neurodegener ; 16(1): 12, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632269

RESUMO

Inherited optic neuropathies are the most common mitochondrial diseases, leading to neurodegeneration involving the irreversible loss of retinal ganglion cells, optic nerve degeneration and central visual loss. Importantly, properly regulated mitochondrial dynamics are critical for maintaining cellular homeostasis, and are further regulated by MIEF1 (mitochondrial elongation factor 1) which encodes for MID51 (mitochondrial dynamics protein 51), an outer mitochondrial membrane protein that acts as an adaptor protein to regulate mitochondrial fission. However, dominant mutations in MIEF1 have not been previously linked to any human disease. Using targeted sequencing of genes involved in mitochondrial dynamics, we report the first heterozygous variants in MIEF1 linked to disease, which cause an unusual form of late-onset progressive optic neuropathy characterized by the initial loss of peripheral visual fields. Pathogenic MIEF1 variants linked to optic neuropathy do not disrupt MID51's localization to the outer mitochondrial membrane or its oligomerization, but rather, significantly disrupt mitochondrial network dynamics compared to wild-type MID51 in high spatial and temporal resolution confocal microscopy live imaging studies. Together, our study identifies dominant MIEF1 mutations as a cause for optic neuropathy and further highlights the important role of properly regulated mitochondrial dynamics in neurodegeneration.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Doenças do Nervo Óptico/genética , Fatores de Alongamento de Peptídeos/genética , Humanos , Proteínas de Membrana/genética , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/genética , Doenças do Nervo Óptico/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Células Ganglionares da Retina/metabolismo
7.
J Matern Fetal Neonatal Med ; 34(13): 2217-2220, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31510824

RESUMO

Desbuquois dysplasia is a very severe and sometimes lethal form of osteochondrodysplasia characterized by prenatal onset of severe micromelic short stature, joint laxity with multiple joint dislocations, specific radiographic features, and facial dysmorphism. Here, we report a case for which whole exome sequencing allowed early prenatal diagnosis of Desbuquois dysplasia before the detection of characteristic ultrasound signs of the disease.


Assuntos
Nanismo , Polidactilia , Anormalidades Craniofaciais , Feminino , Humanos , Instabilidade Articular , Ossificação Heterotópica , Gravidez , Diagnóstico Pré-Natal , Sequenciamento do Exoma
8.
Hum Mutat ; 41(7): 1220-1225, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32227665

RESUMO

Thrombocytopenia-absent radius (TAR) syndrome is characterized by radial defect and neonatal thrombocytopenia. It is caused by biallelic variants of RBM8A gene (1q21.1) with the association of a null allele and a hypomorphic noncoding variant. RBM8A encodes Y14, a core protein of the exon junction complex involved in messenger RNA maturation. To date, only two hypomorphic variants have been identified. We report on a cohort of 26 patients affected with TAR syndrome and carrying biallelic variants in RBM8A. Half patients carried a 1q21.1 deletion and one of the two known hypomorphic variants. Four novel noncoding variants of RBM8A were identified in the remaining patients. We developed experimental models enabling their functional characterization in vitro. Two variants, located respectively in the 5'-untranslated region (5'-UTR) and 3'-UTR regions, are responsible for a diminished expression whereas two intronic variants alter splicing. Our results bring new insights into the molecular knowledge of TAR syndrome and enabled us to propose genetic counseling for patients' families.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Proteínas de Ligação a RNA/genética , Trombocitopenia/genética , Deformidades Congênitas das Extremidades Superiores/genética , Regiões 5' não Traduzidas , Adolescente , Adulto , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 1 , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Rádio (Anatomia)/patologia , Adulto Jovem
9.
Mol Biol Rep ; 47(5): 3779-3787, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32319008

RESUMO

Mitochondrial diseases are a clinically heterogeneous group of multisystemic disorders that arise as a result of various mitochondrial dysfunctions. Autosomal recessive aARS deficiencies represent a rapidly growing group of severe rare inherited mitochondrial diseases, involving multiple organs, and currently without curative option. They might be related to defects of mitochondrial aminoacyl t-RNA synthetases (mtARS) that are ubiquitous enzymes involved in mitochondrial aminoacylation and the translation process. Here, using NGS analysis of 281 nuclear genes encoding mitochondrial proteins, we identified 4 variants in different mtARS in three patients from unrelated Tunisian families, with clinical features of mitochondrial disorders. Two homozygous variants were found in KARS (c.683C>T) and AARS2 (c.1150-4C>G), respectively in two patients, while two heterozygous variants in EARS2 (c.486-7C>G) and DARS2 (c.1456C>T) were concomitantly found in the third patient. Bio-informatics investigations predicted their pathogenicity and deleterious effects on pre-mRNA splicing and on protein stability. Thus, our results suggest that mtARS mutations are common in Tunisian patients with mitochondrial diseases.


Assuntos
Alanina-tRNA Ligase/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Alanina-tRNA Ligase/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Humanos , Masculino , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação/genética , Linhagem
10.
Genet Med ; 22(1): 181-188, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31363182

RESUMO

PURPOSE: Kabuki syndrome (KS) (OMIM 147920 and 300867) is a rare genetic disorder characterized by specific facial features, intellectual disability, and various malformations. Immunopathological manifestations seem prevalent and increase the morbimortality. To assess the frequency and severity of the manifestations, we measured the prevalence of immunopathological manifestations as well as genotype-phenotype correlations in KS individuals from a registry. METHODS: Data were for 177 KS individuals with KDM6A or KMT2D pathogenic variants. Questionnaires to clinicians were used to assess the presence of immunodeficiency and autoimmune diseases both on a clinical and biological basis. RESULTS: Overall, 44.1% (78/177) and 58.2% (46/79) of KS individuals exhibited infection susceptibility and hypogammaglobulinemia, respectively; 13.6% (24/177) had autoimmune disease (AID; 25.6% [11/43] in adults), 5.6% (10/177) with ≥2 AID manifestations. The most frequent AID manifestations were immune thrombocytopenic purpura (7.3% [13/177]) and autoimmune hemolytic anemia (4.0% [7/177]). Among nonhematological manifestations, vitiligo was frequent. Immune thrombocytopenic purpura was frequent with missense versus other types of variants (p = 0.027). CONCLUSION: The high prevalence of immunopathological manifestations in KS demonstrates the importance of systematic screening and efficient preventive management of these treatable and sometimes life-threatening conditions.


Assuntos
Doenças Autoimunes/epidemiologia , Proteínas de Ligação a DNA/genética , Face/anormalidades , Doenças Hematológicas/complicações , Histona Desmetilases/genética , Proteínas de Neoplasias/genética , Doenças da Imunodeficiência Primária/epidemiologia , Doenças Vestibulares/complicações , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/imunologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Doenças Hematológicas/genética , Doenças Hematológicas/imunologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mutação , Prevalência , Sistema de Registros , Índice de Gravidade de Doença , Doenças Vestibulares/genética , Doenças Vestibulares/imunologia , Adulto Jovem
11.
Am J Med Genet A ; 182(3): 565-569, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31793730

RESUMO

RING Finger Protein 113 A (RNF113A, MIM 300951) is a highly conserved gene located on chromosome Xq24-q25, encoding a protein containing two conserved zinc finger domains involved in DNA alkylation repair and premessenger RNA splicing. To date, only one pathogenic variant of RNF113A, namely c.901C>T; p.Gln301Ter, has been reported in humans by Tarpey et al. in 2009. Thereafter, Corbett et al. stated that this variant was responsible for an X-linked form of nonphotosensitive trichothiodystrophy associated with profound intellectual disability, microcephaly, partial corpus callosum agenesis, microphallus, and absent or rudimentary testes. This variant was then shown to alter DNA alkylation repair, providing an additional argument supporting its pathogenicity and important clues about the underlying pathophysiology of nonphotosensitive trichothiodystrophy. Using exome sequencing, we identified exactly the same RNF113A variant in two fetuses affected with abnormalities similar to those previously reported by Corbett et al. To our knowledge, this is the second report of a RNF113A pathogenic variant in humans.


Assuntos
Agenesia do Corpo Caloso/genética , Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Síndromes de Tricotiodistrofia/genética , Agenesia do Corpo Caloso/diagnóstico , Agenesia do Corpo Caloso/patologia , Exoma/genética , Feminino , Genes Ligados ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Microcefalia/patologia , Linhagem , Síndromes de Tricotiodistrofia/diagnóstico , Síndromes de Tricotiodistrofia/patologia , Sequenciamento do Exoma
12.
Ann Clin Transl Neurol ; 6(8): 1572-1577, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31402626

RESUMO

Homozygous mutations in MAG, encoding the myelin-associated glycoprotein, a transmembrane component of the myelin sheath, have been associated with SPG 75 recessive spastic paraplegia. Here, we report the first patient with two compound heterozygous novel MAG mutations (p.A151V and p.S373R) and early developmental delay with a progressive complex phenotype characterized by spastic paraplegia, peripheral sensorimotor neuropathy, intellectual disability, and sensorial dysfunctions with severe optic atrophy and hearing involvement. Brain imaging showed progressive global cerebellar atrophy. We propose that complex hereditary spastic paraplegia, with axonal and demyelinating polyneuropathy, sensorial impairment and intellectual disability might suggest MAG mutations.


Assuntos
Glicoproteína Associada a Mielina/genética , Paraplegia Espástica Hereditária/fisiopatologia , Encéfalo/fisiopatologia , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Mutação , Paraplegia , Linhagem , Fenótipo
13.
Prenat Diagn ; 39(11): 986-992, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31273809

RESUMO

OBJECTIVE: Uniparental disomy (UPD) testing is currently recommended during pregnancy in fetuses carrying a balanced Robertsonian translocation (ROB) involving chromosome 14 or 15, both chromosomes containing imprinted genes. The overall risk that such a fetus presents a UPD has been previously estimated to be around ~0.6-0.8%. However, because UPD are rare events and this estimate has been calculated from a number of studies of limited size, we have reevaluated the risk of UPD in fetuses for whom one of the parents was known to carry a nonhomologous ROB (NHROB). METHOD: We focused our multicentric study on NHROB involving chromosome 14 and/or 15. A total of 1747 UPD testing were performed in fetuses during pregnancy for the presence of UPD(14) and/or UPD(15). RESULT: All fetuses were negative except one with a UPD(14) associated with a maternally inherited rob(13;14). CONCLUSION: Considering these data, the risk of UPD following prenatal diagnosis of an inherited ROB involving chromosome 14 and/or 15 could be estimated to be around 0.06%, far less than the previous estimation. Importantly, the risk of miscarriage following an invasive prenatal sampling is higher than the risk of UPD. Therefore, we do not recommend prenatal testing for UPD for these pregnancies and parents should be reassured.


Assuntos
Cromossomos Humanos Par 14 , Cromossomos Humanos Par 15 , Diagnóstico Pré-Natal , Translocação Genética , Dissomia Uniparental , Adulto , Feminino , Humanos , Masculino , Gravidez , Estudos Retrospectivos , Medição de Risco
14.
Clin Genet ; 95(1): 177-181, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30298622

RESUMO

Reunion Island is a French oversea department in the Indian Ocean with 1.6/1000, an estimated prevalence of deafness that is almost double as compared to the mainland France. Twelve children having isolated bilateral prelingual profound deafness along with motor delay attributed to vestibular areflexia were enrolled. Their mean walking age was 19 months. Electroretinography and temporal bone CT-scans were normal in all cases. A novel homozygous frameshift lipoma HMGIC fusion partner-like 5 (LHFPL5) variant c.185delT p.(Phe62Serfs*23) was identified using whole-exome sequencing. It was found in seven families. Four patients from two different families from both Reunion Island and mainland France, were compound heterozygous: c.185delT p.(Phe62Serfs*23) and c.472C > T p.(Arg158Trp). The phenotype observed in our patients completely mimics the hurry-scurry (hscy) murine Tmhs knock-out model. The recurrent occurrence of same LHFPL5 variant in Reunion Island is attributed to common ancestor couple born in 1693.


Assuntos
Vestibulopatia Bilateral/genética , Surdez/genética , Proteínas de Membrana/genética , Transtornos Motores/genética , Animais , Vestibulopatia Bilateral/diagnóstico por imagem , Vestibulopatia Bilateral/fisiopatologia , Surdez/diagnóstico por imagem , Surdez/fisiopatologia , Eletrorretinografia , Feminino , Mutação da Fase de Leitura/genética , Homozigoto , Humanos , Lactente , Masculino , Camundongos , Transtornos Motores/diagnóstico por imagem , Transtornos Motores/fisiopatologia , Linhagem , Tomografia Computadorizada por Raios X , Sequenciamento do Exoma
15.
Eur J Med Genet ; 61(8): 442-450, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29510240

RESUMO

Mutations in the oligophrenin 1 gene (OPHN1) have been identified in patients with X-linked intellectual disability (XLID) associated with cerebellar hypoplasia and ventriculomegaly, suggesting it could be a recognizable syndromic intellectual disability (ID). Affected individuals share additional clinical features including speech delay, seizures, strabismus, behavioral difficulties, and slight facial dysmorphism. OPHN1 is located in Xq12 and encodes a Rho-GTPase-activating protein involved in the regulation of the G-protein cycle. Rho protein members play an important role in dendritic growth and in plasticity of excitatory synapses. Here we report on 17 individuals from four unrelated families affected by mild to severe intellectual disability due to OPHN1 mutations without cerebellar anomaly on brain MRI. We describe clinical, genetic and neuroimaging data of affected patients. Among the identified OPHN1 mutations, we report for the first time a missense mutation occurring in a mosaic state. We discuss the intrafamilial clinical variability of the disease and compare our patients with those previously reported. We emphasize the power of next generation techniques (X-exome sequencing, whole-exome sequencing and targeted multi-gene panel) to expand the phenotypic and mutational spectrum of OPHN1-related ID.


Assuntos
Cerebelo/anormalidades , Proteínas do Citoesqueleto/genética , Proteínas Ativadoras de GTPase/genética , Deficiência Intelectual/genética , Mutação , Malformações do Sistema Nervoso/genética , Proteínas Nucleares/genética , Fenótipo , Adolescente , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Criança , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Deficiência Intelectual/patologia , Masculino , Malformações do Sistema Nervoso/patologia , Linhagem
16.
J Bone Miner Metab ; 36(6): 723-733, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29236161

RESUMO

Hypophosphatasia (HPP) is a rare inherited metabolic bone disease due to a deficiency of the tissue nonspecific alkaline phosphatase isoenzyme (TNSALP) encoded by the ALPL gene. Patients have consistently low serum alkaline phosphatase (AP), so that this parameter is a good hallmark of the disease. Adult HPP is heterogeneous, and some patients present only mild nonpathognomonic symptoms which are also common in the general population such as joint pain, osteomalacia and osteopenia, chondrocalcinosis, arthropathy and musculoskeletal pain. Adult HPP may be recessively or dominantly inherited; the latter case is assumed to be due to the dominant negative effect (DNE) of missense mutations derived from the functional homodimeric structure of TNSALP. However, there is no biological argument excluding the possibility of other causes of dominant HPP. Rheumatologists and endocrinologists are increasingly solicited for patients with low AP and nonpathognomonic symptoms of HPP. Many of these patients are heterozygous for an ALPL mutation and a challenging question is to determine if these symptoms, which are also common in the general population, are attributable to their heterozygous ALPL mutation or not. In an attempt to address this question, we reviewed a cohort of 61 adult patients heterozygous for an ALPL mutation. Mutations were distinguished according to their statistical likelihood to show a DNE. One-half of the patients carried mutations predicted with no DNE and were slightly less severely affected by the age of onset, serum AP activity and history of fractures. We hypothesized that these mutations result in another mechanism of dominance or are recessive alleles. To identify other genetic factors that could trigger the disease phenotype in heterozygotes for potential recessive mutations, we examined the next-generation sequencing results of 32 of these patients for a panel of 12 genes involved in the differential diagnosis of HPP or candidate modifier genes of HPP. The heterozygous genotype G/C of the COL1A2 coding SNP rs42524 c.1645C > G (p.Pro549Ala) was associated with the severity of the phenotype in patients carrying mutations with a DNE whereas the homozygous genotype G/G was over-represented in patients carrying mutations without a DNE, suggesting a possible role of this variant in the disease phenotype. These preliminary results support COL1A2 as a modifier gene of HPP and suggest that a significant proportion of adult heterozygotes for ALPL mutations may have unspecific symptoms not attributable to their heterozygosity.


Assuntos
Fosfatase Alcalina/genética , Predisposição Genética para Doença , Mutação/genética , Adolescente , Adulto , Idoso , Fosfatase Alcalina/sangue , Feminino , Genes Dominantes , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
17.
Hum Mol Genet ; 25(8): 1559-73, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27008887

RESUMO

Despite recent progress in the genetic characterization of congenital muscle diseases, the genes responsible for a significant proportion of cases remain unknown. We analysed two branches of a large consanguineous family in which four patients presented with a severe new phenotype, clinically marked by neonatal-onset muscle weakness predominantly involving axial muscles, life-threatening respiratory failure, skin abnormalities and joint hyperlaxity without contractures. Muscle biopsies showed the unreported association of multi-minicores, caps and dystrophic lesions. Genome-wide linkage analysis followed by gene and exome sequencing in patients identified a homozygous nonsense mutation in TRIP4 encoding Activating Signal Cointegrator-1 (ASC-1), a poorly characterized transcription coactivator never associated with muscle or with human inherited disease. This mutation resulted in TRIP4 mRNA decay to around 10% of control levels and absence of detectable protein in patient cells. ASC-1 levels were higher in axial than in limb muscles in mouse, and increased during differentiation in C2C12 myogenic cells. Depletion of ASC-1 in cultured muscle cells from a patient and in Trip4 knocked-down C2C12 led to a significant reduction in myotube diameter ex vivo and in vitro, without changes in fusion index or markers of initial myogenic differentiation. This work reports the first TRIP4 mutation and defines a novel form of congenital muscle disease, expanding their histological, clinical and molecular spectrum. We establish the importance of ASC-1 in human skeletal muscle, identify transcriptional co-regulation as novel pathophysiological pathway, define ASC-1 as a regulator of late myogenic differentiation and suggest defects in myotube growth as a novel myopathic mechanism.


Assuntos
Códon sem Sentido , Desenvolvimento Muscular , Doenças Musculares/congênito , Doenças Musculares/patologia , Fatores de Transcrição/genética , Adolescente , Animais , Diferenciação Celular , Linhagem Celular , Criança , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Lactente , Masculino , Camundongos , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Linhagem , Estabilidade de RNA , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
19.
Genet Med ; 18(1): 49-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25790162

RESUMO

PURPOSE: Treacher Collins/Franceschetti syndrome (TCS; OMIM 154500) is a disorder of craniofacial development belonging to the heterogeneous group of mandibulofacial dysostoses. TCS is classically characterized by bilateral mandibular and malar hypoplasia, downward-slanting palpebral fissures, and microtia. To date, three genes have been identified in TCS:,TCOF1, POLR1D, and POLR1C. METHODS: We report a clinical and extensive molecular study, including TCOF1, POLR1D, POLR1C, and EFTUD2 genes, in a series of 146 patients with TCS. Phenotype-genotype correlations were investigated for 19 clinical features, between TCOF1 and POLR1D, and the type of mutation or its localization in the TCOF1 gene. RESULTS: We identified 92/146 patients (63%) with a molecular anomaly within TCOF1, 9/146 (6%) within POLR1D, and none within POLR1C. Among the atypical negative patients (with intellectual disability and/or microcephaly), we identified four patients carrying a mutation in EFTUD2 and two patients with 5q32 deletion encompassing TCOF1 and CAMK2A in particular. Congenital cardiac defects occurred more frequently among patients with TCOF1 mutation (7/92, 8%) than reported in the literature. CONCLUSION: Even though TCOF1 and POLR1D were associated with extreme clinical variability, we found no phenotype-genotype correlation. In cases with a typical phenotype of TCS, 6/146 (4%) remained with an unidentified molecular defect.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Disostose Mandibulofacial/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Criança , Feminino , Estudos de Associação Genética , Humanos , Masculino , Disostose Mandibulofacial/diagnóstico , Microcefalia/genética , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Fatores de Alongamento de Peptídeos/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Deleção de Sequência , Adulto Jovem
20.
Ann Neurol ; 78(6): 871-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26288984

RESUMO

OBJECTIVE: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in the SACS gene. SACS encodes sacsin, a protein whose function remains unknown, despite the description of numerous protein domains and the recent focus on its potential role in the regulation of mitochondrial physiology. This study aimed to identify new mutations in a large population of ataxic patients and to functionally analyze their cellular effects in the mitochondrial compartment. METHODS: A total of 321 index patients with spastic ataxia selected from the SPATAX network were analyzed by direct sequencing of the SACS gene, and 156 patients from the ATAXIC project presenting with congenital ataxia were investigated either by targeted or whole exome sequencing. For functional analyses, primary cultures of fibroblasts were obtained from 11 patients carrying either mono- or biallelic variants, including 1 case harboring a large deletion encompassing the entire SACS gene. RESULTS: We identified biallelic SACS variants in 33 patients from SPATAX, and in 5 nonprogressive ataxia patients from ATAXIC. Moreover, a drastic and recurrent alteration of the mitochondrial network was observed in 10 of the 11 patients tested. INTERPRETATION: Our results permit extension of the clinical and mutational spectrum of ARSACS patients. Moreover, we suggest that the observed mitochondrial network anomalies could be used as a trait biomarker for the diagnosis of ARSACS when SACS molecular results are difficult to interpret (ie, missense variants and heterozygous truncating variant). Based on our findings, we propose new diagnostic definitions for ARSACS using clinical, genetic, and cellular criteria.


Assuntos
Biomarcadores , Proteínas de Choque Térmico/fisiologia , Mitocôndrias , Espasticidade Muscular/diagnóstico , Ataxias Espinocerebelares/congênito , Adolescente , Adulto , Técnicas de Cultura de Células , Criança , Estudos de Coortes , Feminino , Fibroblastos , Proteínas de Choque Térmico/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/fisiologia , Espasticidade Muscular/genética , Espasticidade Muscular/patologia , Espasticidade Muscular/fisiopatologia , Mutação , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...